[terative solvers based on Krylov subspace methods.

1 Methods description

1.1 Methods to implement

The system of linear equations:

where A € RN*N 2. b€ RN.

Krylov subspace method is a projection method on Krylov subspaces:
K (A, v) = spanv, Av, A%v, ..., A"y

The idea of projection method is to extract an approximate solution from this subspace. In general method
consists of two parts:

1. Construction of the ortogonal basis of the subspace

2. Finding a vector from the subspace wich provides minimization of residual in some norm or satisfy
another conditions.

1.1.1 Conjugate Gradient Method (CG) [3]

This method requires A to be symmetric and positive defenite.

The CG constructs the ith iterate () as an element of (®) +-spanr(®) | ..., A7~ 179 so that (2() — )T A(2) — z)
is minimized, where z is the axact solution of Az = b. For symmetric A an ortogonal basis for the Krylov
subspace spanv, Av, A%v, ..., A1y can be constructed with only three-term recurrences, such a recurrence
also suffices for generating the residuals. So there is no need to store a lot of vectors. Residual vector (¥ in
this iterative process is made ortogonal to all the previous residual vectors.

e Application:
For symmetric and positive defenite matrix A.

e Computations per iteration:
One matrix-vector product, three vector updates, and two inner products.

e Storage:
4 additional vectors of size N.

1.1.2 BiConjugate Gradient Method (BICG) [3]

The CG method cannot be applied for nonsymmetric systems because the residual vectors cannot be made
ortogonal with short recurrences. The BICG replaces ortogonal sequence of residuals by two mutually
ortogonal sequences, at the price of no longer providing minimization. The update relations in BICG are
the same as in CG but based also on A”.

e Application:
For nonsymmetric matrix A. (The method can fail because there are divisions on some inner products
which can become zero and cause a breakdown. But still there are some tricks to avoid the breakdowns.)

e Computations per iteration:
The same as in CG but twice more. And a transpose of matrix A is required.

e Storage:
8 additional vectors of size N. (and may be AT depending on implementation)



1.1.3 BiConjugate Gradient Method (BICGSTAB) [3]

The BICGSTAB method was developed to solve nonsymmetric systems while avoiding irregular convergence
patterns. BICGSTAB computes () = Q;(A)P;(A)r(®), where Q; is as ith degree polynomial describing a
steepest descent update. This method often provides a speed of covergence twice faster than BICG.

e Application:
For nonsymmetric matrix A. (The method can fail because there are divisions on some inner products
which can become zero and cause a breakdown. But there are some tricks to avoid breakdowns.)

e Computations per iteration:
Two matrix-vector products, four inner products, for vector updates.

e Storage:
& additional vectors of size N.

1.1.4 Generalized Minimal Residual (GMRES) [3]

This method is applicable for nonsymmetric systems and has no breakdown situations. It constructs a
sequence of ortogonal basis vectors of Krylov subspace, but in the absence of symmetry this can’t be done
with short recurrence, so all previously computed vectors are stored. That is why restarted method is
used. Only the first M vectors are to compute at each iteration. After computing this vectors a problem of
minimization is being solved. The problem leads to the system of equations with Hessenberg matrix MxM.
The Householder transformations are used to transform this matrix into upper-triangle form and then the
system is solved with back substitution. After constructing ith iterate (¥ method restarts.

e Application:
For nonsymmetric matrix A. Method is free of breakdown situations.

e Computations per iteration:
At least M+1 matrix-vector products, M?2/2 inner products and vector updates. (And there are some

more operations with objects of size M and MxM)

e Storage:
More than M+1 vectors of size N, a number of vectors of size M and Hessebberg matrix MxM.

1.2 Implementation issues
1.2.1 Choise of sparse matrix realization

This methods were done as a template functions providing replacement of matrix class without changing a
code. Two kind of sparse matrix were tested:

e Manel’s SNDM class: Matrix is represented as a vector of sparse vectors wich are based on a map. It
was designed for nonstructured mesh and was expected to have lower performance.

e Common representation as a set of vectors Ap,Aw,Ae,As,An. For details see [1]

Time of one iteration using these methods was measured for each of this two kind of matrices. Problem

description is of no value in this case.
Methods: CG, BICG, BICGSTAB, Restarted GMRES with restart m=50.



Results of the tests are following:

Table 1: Mesh 100x100

Method | sndm | common | acceleration, times
CG 0.0216 | 0.00227 9.5
BI-CG 0.041 0.0045 9.1
BI-CGSTAB | 0.042 0.0047 8.9
GMRES 1.31 0.34 3.9

Table 2: Mesh 200x200

Method | sndm | common | acceleration, times
CG 0.084 0.011 7.6
BI-CG 0.163 0.019 8.6
BI-CGSTAB | 0.167 0.023 7.3
GMRES 6.6 2.6 2.5

So the use of SNDM matrix can cause up to 10 times decrease of performance. In all following compu-
tations the common matrix representation is used.

1.2.2 Additional containers and functions

The methods CG, BICG, BICGSTAB don’t require additional containers. This methods were done as tem-
plate functions like this:

template < class m, class v, class p >
where m - matrix class, v - vector class, p - preconditioner class.

One additional vector operation was created: expr(v X, v Y, double a, double b)
This operation computes X = aX + bY.

Containers and operations for GMRES:

e Hessenberg matrix
This matrix is represented as a set of vectors with numbers i=1,..,N, where ith vector has size i+1;
This way provides an economy of storage because zero elements are not stored.

e Householder rotation
This class is used to represent rotation matrix. Only one integer value and two double values are
stored. A sequence of Householder transformations is stored in array of this rotation matrices.
For this class only one additional operation was used:
v & mult(HouseRot &J, v& h) - applies rotation to the vector h.
This operation requres only 4 multiplications of double.
(Note: all this additional operations are not tempate functions yet. )



2 Performance tests with Jacobi preconditioner.

2.1 Diffusion problem
2.1.1 Problem description

The system of linear equations:
Az = b,
where A € RN*N 2. b€ RN.
In this case A is a common pentadiagonal matrix given in terms of vectors Ap, Aw, Ae, As, An.
Eech of this vectors is given in a matrix form. Let N = n xn. All this vectors can be represented as

_ P _ P _ P _ P _ P _ ; - - _
App = ai;, Awyp = a3, Aex =aj;, Asy=a;;, Ang=a;;, wherek =i+n(j—1), i=1.mn, j=1l.n.
In this notation matrix A is following:

c P e wo o n E - L —
a; ;= 1,af;=-1,4a/=0,a7;=0,0ai;=0,i=1,j=1.n
P _ e _ wo o n_ E - L —
a;;=1,ai;=0,0a;=-1,0a;=0,0a};=0,1=n, j=1n
P _ e _ wo o n E - L —
a; ;= 1, ai ; = 0, a;; = 0, all; = -1, aj ;= 0,i=1.mn,53=1
P _ e _ wo o n - L L
% a; ;= 1, ai ; = 0, a;; = 0, ajl; = 0, a; ;= -1, i=1.mn, j=
P _ [ wo n _— - — . N
a;; =8, ai;=-1,a=-1,a}; =-1,aj ; =1, i = n/2, j=n/2
In all other poins :
P _ e _ W n -
a;; =4, aj;=—1 0 =-1, af; =1, a;; = -1
\ biZO, 1=1.N

This matrix is not symmetric so conjugate gradient method is inapplicable. The matrix can be easily made
symmetric by following transformations:

New matrix Agym of size (n-2)x(n-2) is made from A by throwing out boundary points. (It is possible because
of “free” boundary conditions.) It is done like showed in this picture.

Figure 1: Throwing out boundary poins.

This symmetric matrix is used instead of previous nonsymmetric in all the following computations.

Initial guess: xES_)n(j_l) = cos(2mx;)+cos(2my;) , v; = (i—1)/(n—1), y; = (j—1)/(n—1),i=1.m, j =1..n.
Condition of finishing iterative process is:
|4z — b]

—6
Az —p <10

where £(® is the initial guess and z(9) is the ith iterate.



2.1.2 Results

In all the tables below “N of ¢cv” means number of control volumes, “Time” means CPU time, “N it.” means
number of iterations. Here in the table are the results of the methods with Jacobi preconditioner and without
a preconditioner.

Table 3: Conjugate gradient methods

cG BICG BICGSTAB
N of cv Time | N It. | Time | N It. | Time | N It.
100 (10x10) 0.001 47 | 0.002 | 47 | 0.001 34
100 (10x10) Precond. 0.001 42 0.01 42 0.001 32
1024 (32x32) 0.016 | 137 | 0.03 137 | 0.026 | 106
1024 (32x32) Precond. 0.018 | 135 | 0.035 | 135 | 0.028 | 103
2500 (50x50) 0.058 | 190 | 0.124 | 190 | 0.104 | 161
2500 (50x50) Precond. 0.069 | 199 | 0.143 | 199 | 0.111 | 150
4096 (64x64) 0.221 | 241 0.42 241 | 0.383 | 200
4096 (64x64) Precond. 0.222 | 239 | 0.45 239 | 0.399 | 202
10000 (100x100) 0.68 | 372 1.35 372 1.2 302
10000 (100x100) Precond. 0.72 369 1.42 369 1.2 298
14400 (120x120 1.22 444 2.46 444 2.16 365
14400 (120x120) Precond. 1.31 442 2.56 442 2.26 367
22500 (150x150 3.54 545 6.39 545 5.9 434

35721 (189x189 598 | 683 | 10.2 | 683 | 11.03 | 573
35721 (189x189) Precond. 6.20 | 691 10.8 | 691 10.1 | 547
51076 (226x226 119 | 799 | 21.39 | 799 | 20.7 | 638
51076 (226x226) Precond. 129 | 814 | 23.2 | 814 | 22.3 | 670

( )
( )
IHRED
22500 (150x150) Precond. | 3.73 | 549 | 6.88 | 549 | 6.1 | 434

( )
( )
( )

)

101124 (318x318 27.45 | 1106 | 46.96 | 1106 | 44.19 | 797

)
101124 (318x318) Precond. | 28.8 | 1123 | 49.6 | 1123 | 43.06 | 755
149769 (387x387) 48.74 | 1353 | 83.9 | 1353 | 100.9 | 1262
149769 (387x387) Precond. | 51.47 | 1364 | 88.9 | 1364 | 101.1 | 1235
201601 (449x449) 76.14 | 1557 | 130.6 | 1557 | 137.8 | 1230
201601 (449x449) Precond. | 79.8 | 1569 | 137.1 | 1569 | 162.0 | 1443
251001 (501x501) 105.8 | 1732 | 181.8 | 1732 | 181.9 | 1402
251001 (501x501) Precond. | 109.6 | 1733 | 189.1 | 1733 | 186.8 | 1349
301401 (549x549) 138.7 | 1893 | 238.5 | 1893 | 202.6 | 1299
301401 (549x549) Precond. | 142.8 | 1886 | 245.9 | 1886 | 261.8 | 1596

It looks like Jacobi preconditioner gives no effect in this case.



GMRES was tested using 7 values of restart length: 35, 55, 100, 170, 240,300,380. Restart length means
the number of basis vectors of Krylov subspace to construct at one iteration. Here in the tables are the
results of the GMRES(m) with Jacobi preconditioner and without a preconditioner. Minimal CPU time is
marked bold in following table.

Table 4: GMRES(m) CPU time

| N of cv m=35 | m=>55 | m=100 | m=170 | m=240 | m=300 | m=380 |
100 (10x10) 0.002 0.003 0.007 0.018 0.034 0.052 0.057
100 (10x10 Precond. 0.003 0.003 0.006 0.017 0.034 0.053 0.060
1024 (32x32) 0.157 0.122 0.199 0.28 0.546 0.83 1.325
1024 (32x32) Precond. 0.165 0.123 0.199 0.28 0.545 0.835 1.323
2500 (50x50) 1.662 0.849 0.756 1.366 1.33 2.04 3.22
2500 (50x50 Precond.) 1.666 0.848 0.758 1.366 1.329 2.042 3.221
4096 (64x64) 3.716 3.638 3.025 2.307 2.224 3.399 5.351
4096 (64x64) Precond. 3.715 3.633 3.024 2.317 2.223 3.399 5.353
10000 (100x100) 27.49 17.855 11.399 9.315 12.022 18.442 14.668
10000 (100x100) Precond. 27.458 17.868 11.389 9.307 12.019 18.534 14.66
14400 (120x120) 55.2 49.46 43.334 | 27.348 26.609 27.066 42.875
14400 (120x120) Precond. 54.29 56.197 | 43.438 | 27.084 26.117 26.811 42.315
22500 (150x150) 201.081 | 110.72 | 168.637 | 95.136 | 104.409 119.812 128.11
22500 (150x150) Precond. 205.7 108.335 166.4 95.38 105.98 126.495 130.65
35721 (189x189) 552.719 | 523.286 | 482.545 | 369.47 | 452.244 | 351.247 | 333.96
35721 (189x189) Precond. 552.846 | 522.105 | 482.811 | 368.916 | 451.548 350.18 334.7
51076 (226x226) 1104.39 | 918.204 | 747.821 | 757.623 | 450.39 497.173 | 473.815
51076 (226x226 Precond. 1102.35 | 916.606 | 747.14 | 758.041 | 448.865 | 496.787 | 473.794
101124 (318x318) 3652.39 | 3418.73 | 3334.07 | 3062.97 | 2419.83 | 1775.78 | 2512.88
101124 (318x318) Precond. | 3663.94 | 3415.34 | 3322.43 | 3061.63 | 2419.44 | 1781.89 | 2202.18

Table 5: GMRES(m) number of iterations (equal for both kind of preconditioner)

| Nofcv | m=35 [ m=55 | m=100 | m=170 | m=240 | m=300 | m=380 |
100 (10x10) 2 1 1 1 1 1 1
1024 (32x32) 14 4 2 1 1 1 1
2500 (50x50) 43 10 3 2 1 1 1
4096 (64x64) 51 24 7 2 1 1 1
10000 (100x100) | 153 46 10 3 2 2 1
14400 (120x120) | 206 86 26 6 3 2 2
22500 (150x150) | 273 | 106 34 7 4 3 2
35721 (189x189) | 448 | 191 58 16 10 5 3
51076 (226x226) | 601 | 228 62 23 7 5 35
101124 (318x318) | 1041 [ 440 141 47 19 9 8

In this case Jacobi preconditioner also gives no effect.




- »
250 | —m— cG /m
- | —=— BICG
—8— BICGSTAB %/
| — B - CGP /7,
| | — = - BICGP /7,
— B - BICGSTAB-P
200 [~ Y,
d -
& 150}
< B
£ -
= B
z B
O 100
50 -
0 ! | ! ! | ! ! |
100000 200000 300000
Num of cv

Figure 2: CG methods. (Methods with preconditioner are marked -P)

1000

500

3500 | —m— G35
[ | —=— G55
B —@— G100
| ——— G170
3000 - | —®— G240
- | —=— G300
- G380
- | —@— GBEST
[ | — B - G35P
2500 [~ | — ® - Gs5P
. [ | — ® - GlooP
12} [ | — = - Gl70P
9 L | — - - G240P
~2000f | — = - G3sooP
"E’ - G380P
= [~ | — ® - GBESTP
& 1500 |
O -

[ |
75000 100000

I
50000
Num of cv

1
25000

Figure 3: GMRES(m). (Methods with preconditioner are marked P)



1500

CPU time, sec.
=
o
o
o

500

—— GBEST
—@— CG
—i— BICG
——fll— BICGSTAB

L
100000
Num of cv

L 1 L
200000

L 1
300000

CPU time, sec.

1500 [~

=
o
=}
S
I

500 -

—— GBEST
—@— CG
—i— BICG
~——fll— BICGSTAB

L
100000

L 1 L L 1
200000 300000

Num of cv

Figure 4: Comparison of CG methods and GMRES(BEST) (no preconditioner). Right graph is in logscale.

2.1.3 Comparison with multigrid

Here are the CPU time measurments of multigrid solver applied to the same test problem. (See [4]) In the
table below CPU time of the multigrid solver based on Gauss-Seidel plus TDMA solver is compared with CG,
BICG, BICGSTAB and GMRES that uses the best of these restart parameters (35,55,100,170,240,300,380)
for each mesh size. No precontitioner used.

Table 6: CPU time of the multigrid solver compared with Krylov subspace methods

| Nofcv | GSTDMA-ACM | CG | BICG | BICGSTAB | GMRES(best) |
100 (10x10) 0.005 0.001 | 0.002 0.001 0.002
1024 (32x32) 0.046 0.016 | 0.03 0.026 0.122
2500 (50x50) 0.239 0.058 | 0.124 0.104 0.756
4096 (64x64) 0.351 0.221 | 0.42 0.383 2.224
10000 (100x100) 1.724 0.68 | 1.35 1.2 9.315
14400 (120x120) 1.723 1.22 | 2.6 2.16 26.6
22500 (150x150) 1.292 354 | 6.39 5.9 95.1
35721 (189x189) 6.066 598 | 10.2 11.03 334
51076 (226x226) 9.749 119 | 21.39 20.7 450
101124 (318x318) 19.684 27.45 | 46.96 44.19 449
149769 (387x387) 31.875 4874 | 83.9 100.9 1776
201601 (449x449) 51.006 76.14 | 130.6 137.8
251001 (501x501) 71.918 105.8 | 1818 181.9
301401 (549x549) 87.764 138.7 | 2385 202.6
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2.2 Convection problem (solenoidal velocity field)

2.2.1 Problem description

Figure 7: Convection in solenoidal velocity field

For details about the problem see [6]

The system of linear equations:

where A € RN*N, 2,b € RN,
In this case A is a common pentadiagonal matrix given in terms of vectors Ap, Aw, Ae, As, An.
Eech of this vectors is given in a matrix form. Let N = n xn. All this vectors can be represented as Apy =

ajj, Awg =aj;, Aek—ap], Asp =aj;, Any =a};, by =bij, wherek =i+n(j—1),i=1.n, j=1.n.
In this notation matrix A is following:
(df;=1,4af;=0,a=0,0a7;=0,0a;=0,i=1,j=1.n
aj;=1,af;=0,af;=0,a?; =0, af;=0,i=n, j=1n
aj;=1,af;=0,a;=0,ap;=0,af;=0,i=1.n/2, j=
aj;=1,af;=0,af; =0, af; =-1,a}; =0, i=n/2+1.n, j=1
aj; =1, af;=0,af; =0, a}; =0, af; —O,Z—In j=n
aﬁjzl,aijzo, a; =0, a}; =0, a}; =0, i=n/2, j=n/2

In all other poins :

af]—D x S(P.) + maxz(0,—F,)
.= Dy, * S(Py) + maz(0, —Fy)

ai . = Dg x S(Ps) + max(0, —F;)

ai;:D * S(P,) + maz(0,—F,)
[ @i = —(ai; +ai; +aj;ai;);
where

F. =uxdy

F,=uxdy

F, =vxdx

Fs =vxdz

D, =dy/dx

D, =dy/dz

D,, = dxz/dy

D, =dzx/dy

Pe:Fe/De

P,=F,/D,



de =2.0/(Nz - 1)
dy =1.0/(Ny—1)

u=Pexyx(1l—(x—1)*(z—1))
v=—Pex(x—1)x(1—yxy)

Pe = 10000 - Peclet number
S(P) =1 for any P (Upwind scheme)

Vector b is following:

bij =14 tanh(10(2((¢ — 1)dz — 1)+ 1)), i =1..n/2, j =1
bi,j = 0, 1= n/2..n, ] =1

bij =1—tanh(10), i=1.n, j=n

b@j =1- tanh(lO), 1= 1, ] =1..n

bij =1—tanh(10), i=n, j=1.n

In all other poins :

bi,j = 0;

\

Initial guess: mgi)n(jfl) = cos(2mx;)+cos(2my;) , x; = (i—-1)/(n—=1), y; = (j—1)/(n—1), i =1.n, j =1..n.

Condition of finishing iterative process is:

42© —b)
Az g <

where (%) is the initial guess and z(¥) is the ith iterate.

2.2.2 Results using no preconditioner

In all the tables below “N of cv” means number of control volumes, “Time” means CPU time, “N it.” means
number of iterations.
Conjugate gradient methods failed to converge on on mesh 150x75 and bigger.

Table 7: Conjugate gradient methods without a preconditioner
BICG BICGSTAB
N of cv Time | N It. | Time | N It.

200 (20x10) | 0.009 | &4 [ 0.008 | 70
800 (40x20) | 0.056 | 177 | 0.059 | 235
1800 (60x30) | 0.202 | 284 | 0.314 | 579
3200 (80x40) | 0.698 | 445 | 1.184 | 988
5000 (100x50) | 1.734 | 634 | 2.838 | 1452
11250 (150x75) | —
20000 (200x100) | — | — | — | —
45000 (300x150) | — | — | — | —
80000 (400x200) | — | — | — | —




GMRES was tested using 5 values of restart length: 50, 100, 200, 300, 400. Restart length means the
number of basis vectors of Krylov subspace to construct at one iteration. GMRES with restart parameters
50 and 100 failed to converge on mesh 150x75 and bigger. Minimal CPU time is marked bold in following

table.

Table 8: GMRES(m) without preconditioner

GMRES(50) | GMRES(100) | GMRES(200) | GMRES(300) | GMRES(400)

N of cv Time | N It. | Time | N It. | Time | N It. | Time | N It. | Time | N It.
200 (20x10) 0.008 2 0.014 1 0.051 1 0.145 1 0.295 1
800 (40x20) 0.28 16 0.15 2 0.3 1 0.65 1 1.1 1
1800 (60x30) 0.8 16 1.3 7 0.7 1 1.5 1 2.6 1
3200 (80x40) 2.0 22 2.9 9 2.6 2 2.8 1 4.5 1
5000 (100x50) 6.1 39 7.4 14 5.8 3 4.3 1 8.2 1
11250 (150x75) — — 21.8 17 47.6 10 42 4 36.5 2
20000 (200x100) — — 85 21 175.3 12 284.4 8 232 4
45000 (300x150) — — 354 34 680 16 1140 13 1608 10
80000 (400x200) — — 992 49 1859 26 2862 18 3920 14

2.2.3 Results using Jacobi preconditioner (diagonal scaling)

Here acceleration means relation between CPU time without preconditioner and the CPU time when using
Jacobi preconditioner.

Table 9: Conjugate gradient methods with Jacobi preconditioner

BICG BICGSTAB

N of cv Time (acceleration) | NTIt. | Time (acceleration) | N It.
300 (20x10) 0.005 (1.8) 36 0.004 (2.0) 33
800 (40x20) 0.03 (1.86) 36 0.022 (2.68) s
1800 (60x30) 0.103 (1.96) 136 0.075 (4.19) 125
3200 (80x40) 0.306 (2.29) 180 0.223 (5.31) 176
5000 (100x50) 1.41 (1.2) 73 0.501 (5.60) 234
11250 (150x75) 13.5 1706 1.97 380
20000 (200x100) 49.1 2510 7.76 510
45000 (300x150) 134.3 3166 26.47 745
80000 (400x200) 218 3847 414 931
125000 (500x250) > 1000 > 10000 79.5 1133




GMRES was tested using 5 values of restart length: 3, 4, 5, 10, 15. Minimal CPU time is marked bold
in following table.

Table 10: GMRES(m) with Jacobi preconditioner
GMRES(3) GMRES(4) | GMRES(5) | GMRES(10) | GMRES(15)
N of cv Time | N It. | Time | N It. | Time | N It. | Time | N Tt. | Time | N It.
200 (20x10) 0.004 | 21 |0.004 | 17 | 0.004 | 15 | 0.006 9 0.005 6
800 (40x20) 0.021 38 0.022 31 0.022 26 0.027 16 0.032 12
1800 (60x30) 0.067 | 55 | 0.077 | 45 |0.069 | 36 | 0.084 | 22 | 0.122 | 18
1800 (80x40) 0.18 71 0.17 o7 0.18 48 0.24 28 0.32 21
3200 (100x50) 0.39 89 0.39 69 0.45 58 0.55 33 0.63 24
5000 (150x75) 1.39 | 127 | 1.39 | 100 | 1.44 84 1.68 47 2.0 33
20000 (200x100) | 5.65 166 | 5.33 | 130 5.8 108 | 6.21 60 8.46 43
(
(

45000 (300x150) | 18.5 243 | 186 | 188 | 19.1 155 | 23.5 85 28.4 61
80000 (400x200) | 31.8 | 316 | 32.7 | 247 | 34.3 | 202 | 44.1 110 | 55.6 78
125000 (500x250) | 59.6 | 389 | 61.7 | 303 | 64.4 | 250 | 85.2 | 135 106 96

3 o
: —jil— BICG
25 —@— BICGSTAB
| — .- = PrBICG
| — - = PrBICGSTAB
ok
o] B
(O]
3 B
a’" -
EL15F
- B
o B
o B
1 f—
05|
07 'q=ff:\=:-=:|—‘\—\ 1 [ I |
1000 2000 3000 4000 5000
num of cv

Figure 8: Comparison of BICG and BICGSTAB when using Jacobi preconditioner and without precondi-
tioner. Note that maximum cv number is only 5000 due to fail of not preconditioned methods.
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2.3 Comparison with multigrid

Here are the CPU time measurments of multigrid solver applied to the same test problem. (See [4]) In the
table below CPU time of the multigrid solver based on Gauss-Seidel plus TDMA solver is compared with
BICGSTAB and GMRES that uses the best of these five restart parameters (3,4,5,10,15) for each mesh size.

Table 11: CPU time of the multigrid solver compared with Krylov subspace methods

| N of cv | GSTDMA-ACM | BICGSTAB | GMRES (best) |

200 (20x10) 0.001 0.004 0.004

800 (40x20) 0.004 0.022 0.021
1800 (80x40) 0.012 0.223 0.17
3200 (100x50) 0.023 0.501 0.39
5000 (150x75) 0.082 1.97 1.39
20000 (200x100) 0.280 7.76 5.33
45000 (300x150) 0.847 26.47 185
80000 (400x200) 1.460 414 31.8
125000 (500x250) 1.479 79.5 59.6
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Figure 14: Comparison of GMRES(best m) and conjugate gradient methods when using Jacobi precondi-
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3 Parallel realization

3.1

MPI interface class and additional functions

Special class MPITAssist was designed to make parallel implementation easier. At the present it has been
adopted for 2D structured mesh only. Here is a description of functionality of this class. The processor on
wich the function is being called will be denoted as current processor, and “Me” is the number of the current
processor. Current subdomain means the subdomain that belongs to the current processor. Global number
means the number of node in whole domain. Local number means the number of node in current subdomain.
List of member functions is given below.

Initialization functions:

MPIassist(int arge, char **argv, int sx, int sy)
Contsructor initialises MPI, calls decomposition function and then sets MPI buffer size for asynchronous
data transfer.

void Decompose()
This decomposition function uses N, - number of nodes on x axis in whole domain, IV, -number of
nodes on y axis in whole domain , NP - numper of processors to determine NP, and N P, - numbers
of processors on x and y axises. Thus NP, * NP, = NP. Then this function determines following
values using the number of current processor:

— MeX - number of current processor on x axise

— MeY - number of current processor on y axise

— MyNx - size of current subdomain on x axise

— MyNy - size of current subdomain on y axise

Ibeg - global number of first node of current subdomain on x axise

Jbeg - global number of first node of current subdomain on y axise

If the function fails (no possible decomposition for given domain size and number of processors) program
stops. Details about domain decompositon are in the next subsection.

Functions to access class data members:

inline int Me() - returns Me

inline int MeX() - returns MeX

inline int MeY() - returns MeY

inline int NP()- returns NP

inline int NPX() - returns NP,

inline int NPY() - returns NP,

inline int MyNx() - returns MyNx

inline int MyNy() - returns MyNy

inline int GlobalNx() - returns N,

inline int GlobalNy() - returns N,

inline int Ibeg() - returns the global number of first node of current subdomain on x axise
inline int Jbeg()- returns the global number of first node of current subdomain on y axise
inline int Iend()- returns the global number of last node of current subdomain on x axise

inline int Jend()- returns the global number of last node of current subdomain on y axise



Function to process MPI calls:

inline void mpi_CheckErr(int r,char *txt )
Function checks r - return value of MPI function. If r is not a value of successful completion the
function prints an error message with name of failed MPT function (txt parameter).

inline int Finalize() - calls MPI_Finalize().

Functions to update halo:
(Details about data transmission are in the next subsection.)

void UpdateHalo(dv & X, int hs)

Function updates halo of vector X. hs is the width of the halo. This functions is to be used for
nonoverlapped data transfer. It allocates buffers and completes data transfer. (overlapped means
buffered data transfer is overlapped by computaions)

void SetBuf( int hs, MPIBuffers &BUF)
Preallocates buffer BUF for overlapped data transfer.

void UpdateHaloSend(dv & X, int hs, MPI_Status *sts , MPI_Request *rr ,MPIBuffers&BUF)
Function starts asynchronous buffered data transfer to update halo of vector X. hs is the width of the
halo. This functions is to be used for overlapped data transfer. Buffer BUF must be allocated by
previous function before using this function. This function is used together with following function.

void UpdateHaloRecv(dv & X, int hs, MPI_Status *sts , MPI_Request *rr ,MPIBuffers & BUF)
Function waits while all the data transfer started by previous function is finished. Then it updates the
halo of vector x.

void DeleteBuf(MPIBuffers &BUF)
Deletes buffer allocated by SetBuf.

Then there are additional non-member functions:

long LocalGlobal(long i, int Nx, int Ny, int mNx, int mNy, int IBEG, int JBEG, int hs)
Returns the global number of node that corresponds to i - the number of element in a vector. If vector
has no halo then i is equal to local number of the node.

long GlobalLocal(long i, int Nx, int Ny, int mNx, int mNy, int IBEG, int JBEG, int hs) Returns the
number of element in a vector that corresponds to i - global number of node . If vector has no halo
function returns local number of the node.

dv & pmult(MPIassist &MyMPI, Acoef &A, dv& X, dv& Q)
Parallel multiplication of the common pentadiagonal matrix A on vector X. Q is a resulting vector.
This function uses nonoverlapped data transfer.

dv & pmult2(MPlassist &MyMPI, Acoef &A, dv& X, dv& Q)
The same as previous but uses overlapped data transfer.

double pdot(MPIassist &MyMPI, dv &a,dv &b)
Parallel inner vector product for vectors of equal size.

double pdot(MPIassist &MyMPI, dv &a,dv &b, int hs)
Parallel inner vector product for vectors of different size. It is used when one of the vectors has a halo
and another has not. hs is a halo width.

dv & eq(MPlassist &MyMPI, dv &a,dv &b, int hs)
This function is used instead of operation a=b when one of the vectors has a halo and another has not.
hs is a halo width.

PWriteResult(MPIassist &MyMPI, dv & X, char *fn)

Writes data of vector X that correspond to the current subdomain data. It also writes all the additional
information to allow junction program to build a single file for whole domain. fn - filename. X must
not have a halo. (see subsection 4.6 for details)



3.2 Domain decomposition and data transmission

Decomposition on both axises is used. All subdomains are of equal size in this case. The following labelling
is used:

e N, - number of current processor on x axise
e N, - number of current processor on x axise
e NP - number of current processor on x axise

e NP, - number of current processor on x axise

e NP, - number of current processor on x axise

e MeX - number of current processor on x axise

e MeY - number of current processor on y axise

e MyNx - size of current subdomain on x axise

e MyNy - size of current subdomain on y axise

e Ibeg - global number of first node of current subdomain on x axise
e Jbeg - global number of first node of current subdomain on y axise

e Iend- global number of last node of current subdomain on x axise

e Jend- global number of last node of current subdomain on y axise

i Decomposition example
NP=8, NP, =3, NP =3
N
Y Me =6 Me=7 Me=8
Me, =0 Me, = 1 Me, =
Me, =2 Me, =2 Me, =2
Jend _
Me=3 | Current Me=5
Me =0 | Processor Me =2
Me::l Me =1
Me =4 Y
My N,
Me, =1
Me =1
y
Jheg
Me=0 Me=1 Me =2
Mex=0 Mex=1 Mex:
Me, =0 Me, =0 Me =0
y y y
My N,
0 i i N i

beg end X



First of all decomposition exists not for all the combinations of domain’s size and number of processors.
Program is terminated if there is no way to decompose.

Decomposition function finds an optimal VP, and NP, for given N,, N, and NP. Optimal means mini-
mization of size of data to transfer. The size is proportional to length of borders of subdomain. Square shape
of subdomain gives minimal border length. So the problem is to find such a decomposition that subdomains

have most “square” shape. It means |2 — 1| is minimal.
Yy

The asynchronous buffered comunication functions MPI_Isend and MPI_Irecv are used for point-to-point
data transfer. All send and recieve functions start at the same time when process communicates with its
neighbours. Then MPI_Waitall waits until all the transmissions have finished. If overlaping of data transfer
by computations is used then MPI_Waitall is placed after all computations that don’t require data from halo
nodes.

All data to send is placed into send buffers. There are four send buffers - one for each direction. Buffers
for left and right directions have size hs*MyNy, buffers for top and bottob directions have size hs*MyNx,
where hs is a halo width.

j Data transmission example
[l Datato send
[l Data to recieve

Halo size
Top neighbour

Jend

Left neighbour Current Right neighbour
processor

Jbeg

Bottom neighbour

0 i i N i

beg end X

The MPI_Allgather function is used for broadcast communications wich are required for inner products.
It seems not the best solution to use this function so it is used temporarily.



3.3 Parallel versions of Krylov subspace methods functions

The only things needed to make sequential functions parallel are the replacement of sequential operations
by their parallel versions and correction of vector sizes.

First there are two kind of vectors: vectors with halo and vectors without it. Vector must has a halo
only if it is involved in matrix vector product. Thus there are changes in sizes of some vectors. Then calls
of matrix vector product function are replaced by calls of parallel function.

Then all inner products are replaced by parallel versions. There are two functions for parallel inner
product: first for vectors without halo and second is used when one vector has halo nodes and another has
not.

Then vector update operations are modified where vectors with and without halo are involved. Function
dv & eq(MPlassist &MyMPI, dv &a,dv &b, int hs) described above is used for conversion of one vector type
to another.

Preconditioner is set to identity matrix in these parallel versions. The preconditioner must be parallelized
separately.

3.4 Validaion test for parallel versions of Krylov subspace methods

Test problem description:
Poisson equation:
0*F O°’F
— + =5 =0b
ox2  0Oy?
Area: Q@ =(0,L;) *(0,Ly), L, =1, L, =1
Boundary conditions: = 0 everywhere on the boundary
n

Sources:
bfb =0 b(L./3,L,/3)=1, b(2L,/3,2L,/3) = -1

Mesh: Uniform, Nx=Ny.

I
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o
w

o
o

o
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Results of test problem solved by parallel solvers were compared for equality with results of sequential
solvers. Residual norms on each iteration and total number of iterations were also compared for equality.
All these results obtained using parallel versions with different number of processors were equal to results of
sequential versions.

But there was a mystery, that is still not solved. In some case at the last iteration the difference about
10~16 between residual norms was found.



3.5 Choice of ortogonalization algorithm for GMRES

There are two versions of Arnoldi algorithm for building ortogonal basis of the Krylov subspace K,,. For
details see [4].

e Arnoldi algorithm

. Choose a vector vy of norm 1

. For j=1,2,....m Do:

Compute h;j = (Avj,v;) for i=1,2,...,
Compute w; = Av; — S, hijv;

hjt1,; = |[lwj|l2. If hjy1,; = 0 then Stop

Vjt1 = wj/hjy1
. EndDo

I R I N

e Arnoldi-Modified Gram-Schmidt

. Choose a vector vy of norm 1
. For j=1,2,....m Do:
Compute w; = Av;
For i=1,2,....,j Do:
hij = (wj,vi)
wj = wj — hijv;
EndDo
hjt1,; = llwj]l2. If hjy1,; = 0 then Stop

© P N oo WD

Vjt1 = wj/hjy1,j
. EndDo

[y
o)

This two algorithms are mathematically equivalent but in presence of round-off the second formulation is
much more reliable. But in parallel implementation the second version requires j broadcast communications
to compute j inner products for each j=1,...,m. So it requires 0.5(m+1)m broadcast communications to build
the basis because inner products are coupled with vector updates (lines 5,6 of 2nd). First version requires
only m broadcast communications. It is because inner products and update of vector w; are separated (lines
3,4 of 1st) so all data about j inner products can be transmitted with only one communication.

Both versions were tested in a sequential mode. Results seems to be equal. But there is a mysterious
decrease of performance up to 10% when using first one although the number of computational operations
seems to be equal. Information about the tests of these algorithms on a parallel computer see in the next
section.



3.6 File output

Here is a description of file output function and junction utility.
File output function:
int PWriteResult(MPIassist &MyMPI, dv & X, char *fn)
X - vector without halo, fn - filename. The name of output file will be fn + number of current processor.
Output is in binary format. This function first writes a structure with decomposition information:
typedef struct Datalnfo{
int me; current processor
int mnp; number of processors
int mXnp; int mYnp;int mZnp; number of processors on X, Y and Z axises
int meX; int meY; int meZ; number of current processor on X,Y and Z axises
int Nx; int Ny; int Nz; size of whole domain on X,Y and Z axises
int mNx; int mNy; int mNz; size of subdomain on X,Y and Z axises
int IBEG; int IEND; Position of subdomain in global numeration.
int JBEG; int JEND;
int KBEG; int KEND;
};

Then it writes the data of vector X.

Junction utility:

This program combines files of all subdomains into one file in techplot format. Files must be placed together
into one directory. Program call is “combine [filename]”. Filename means part of name before number of
processor, for example to combine files DATA001, DATA002, DATA003, DATA004, DATA005, command is

“combine DATA”. If no filename specified then default name “test” is used.



4 Performance tests of Krylov subspace parallel solvers.

4.1 Hardware description

Each node has: 900MHz CPU, 256Kb chache memory, 512Mb RAM.
Network is based on a 100Mbit Fast Ethernet switch.

4.2 Test of matrix-vector product performance. Overlaping of computations
and communications

Matrix vector product (MVP) is a primary operation in these methods. Here are the tests of two MVP
implementations. The tests show acceleration of each MVP function when using different number of proces-
sors.

Common pentadiagonal matrix representation (set of vectors Ap, Aw, Ar, As, An) was used in these
tests. These two kinds of parallel MVP implementations were tested:

e MVP function without overlapping buffered data transmission by computations.
This function has following algorithm:

1. Halo update:

Copying data to transmit into send buffers

Initialization of send and recv buffered transmission functions
— Waiting this mpi calls to complete

Copying data from recieve buffer into halo nodes

2. Calculation over all nodes of subdomain

e MVP function with overlapping (MVPO)
This function has following algorithm:

1. Halo update initialization:

— Copying data to transmit into send buffers
— Initialization of send and recv buffered transmission functions

2. Calculation over all inner nodes of subdomain wich has no halo neighbours

3. Halo update completion:

— Waiting this mpi calls to complete
— Copying data from recieve buffer into halo nodes

4. Calculation over boundary nodes of subdomain that need data from halo nodes

MVPO was expected to give good increase in acceleration when the number of processors is close to
the number that gives maximal acceleration without overlapping. It was also expected to rise the number
of processors that gives maximal acceleration. Tests were done using 1,2,4,9,16 and 25 processors and no
considerable increase of acceleration was obtained. Probably the number of processors was too low. Another
possible reason is the hardware that may be incapable of doing network transactions simultaneously with
computations.



In the table below there are a CPU time and acceleration of MVP with no overlapping when using
different number of processors. Filed Time in the table is the CPU time of 1000 matrix vector products.
Field x is the acceleration (times). Acceleration using N processors means relation between CPU time on
one processor and CPU time on N processors.

Table 12: MVP with no overlapping

Num. of proc: 1 2 4 9 16 25
N of cv Time | Time | X Time | X Time | X Time | X Time | X
57600 18.8 10 1.88 | 5.79 | 3.17 | 2,92 | 647 | 1.27 | 14.84 0.9 20.8
230400 74.1 394 | 1.88 | 20.6 | 3.59 | 9.26 8 5.69 | 12.55 | 3.88 | 18.36

1440000 468 254 | 1.84 | 1942 | 241 | 55.5 | 843 | 455 | 10.28 | 21.1 | 22.18
3686400 1260 688 | 1.83 | 397 | 3.17 | 140.5 | 8.97 | 122.6 | 10.28 | 52.8 | 23.86

X
1
1

921600 2916 | 1 | 1576 | 1.85 | 80.3 | 3.63 37 7.89 | 21.1 | 13.82 | 13.3 | 21.92
1
1

In the diagram each curve correspond to each mesh size.

Meshes:

240x240 (57600 cv), 480x480 (230400 cv), 960x960 (921600 cv), 1200x1200 (1440000 cv),
1920x1920 (3686400 cv).

Black line is the maximum possible acceleration (number of CPU).

Acceleration, times.

5 10 15 20 25
Number of processors

Figure 16: MVP with no overlapping



Here is a comparison of MVP and MVPO for each mesh size. In the following table there is an increase
of performance in repcents when using MVPO instead of MVP.

Table 13: MVP with overlapping: % of increase of performance

Num. of proc: | 2 419 |16 25
Num of cv % | %% | % | %
57600 1212 8|13 14
230400 3 |1-2101]3]5
921600 -1 |-1(0]-2]-1
1440000 2 1 {-210]-1
3686400 3 12(0]3]0

In the diagram below resuls using MVPO are marked with “o” in legend and the curves that correspond
to MVPO are dashed.
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Figure 17: MVP

In this case overlapping of computations and communications gives no substantial increase of performance.



5 Test of CG-methods performance

The description of problem used in these tests is of no value because only the time of fixed number of
iterations was measured. The acceleration using different mesh sizes and different number of processors was

obtained:

Table 14: CG-methods acceleration: Mesh 57600 cv (240x240)
| Nof CPU | CG | BLCG | BI-CGSTAB |

2 1.91 1.92 1.92
4 3.7 3.55 3.68
9 6.93 7.16 6.85
16 8.95 10.58 8.74
25 14.35 11.8 9.24

Table 15: CG-methods acceleration: Mesh 230400 cv (480x480)
| Nof CPU | CG | BLCG | BI-CGSTAB |

2 1.78 1.86 1.99
4 3.57 3.6 3.48
9 7.55 7.65 7.48
16 12.33 | 12.54 12.24
25 16.1 17.19 16.49

Table 16: CG-methods acceleration: Mesh 921600 cv (960x960)
| Nof CPU | CG | BLCG | BI-CGSTAB |

2 1.95 1.97 1.99
4 3.75 3.78 3.74
9 7.91 8.38 8.12
16 13.66 | 14.44 13.92
25 20.5 21.54 21.26

Table 17: CG-methods acceleration: Mesh 1440000 cv (1200x1200)
| Nof CPU | CG | BLCG | BI-CGSTAB |

2 2.06 1.95 2

4 3.36 2.72 2.85
9 8.23 8.03 8.18
16 13.07 | 11.72 11.82
25 22.46 | 22.01 21.39

The results of the tests show the growth of efficiency of parallelization with number of cv. (Efficiency of
parallelization means relation between achieved acceleration and number of processors.)
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Figure 18: CG-methods acceleration: methods comparison
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6 Test of GMRES performance

The description of problem used in these tests is of no value because only the time of fixed number of iterations
was measured. Two versions of GMRES [4] were tested. The only difference between these methods is in
the orthogonalization algorithm.

6.1 Orthogonalization algorithm for GMRES
There are two versions of Arnoldi algorithm for building ortogonal basis of the Krylov subspace K,,.
e Arnoldi algorithm [4]
1. Choose a vector v; of norm 1
2. For j=1,2,....m Do:
3. Compute h;; = (Avj,v;) for i=1,2,...,j
Compute w; = Av; — S, hijv;

Vjt1 = wj/hjy1

4
5. hjp1y = llwjll2. I hjyr; = 0 then Stop
6
7. EndDo

e Arnoldi-Modified Gram-Schmidt [4]

. Choose a vector vy of norm 1
. For j=1,2,....m Do:
Compute w; = Av;
For i=1,2,....,j Do:
hij = (wj,v:)
wj = w; — hijv;
EndDo
hjt1,; = |lwj|l2. If hjy1; = 0 then Stop

© 2 N o WD

it = wj/hj1,
. EndDo

[y
o)

This two algorithms are mathematically equivalent but in presence of round-off the second formulation is
much more reliable. But in parallel implementation the second version requires j broadcast communications
to compute j inner products for each j=1,...,m. So it requires 0.5(m+1)m broadcast communications to build
the basis because inner products are coupled with vector updates (lines 5,6 of 2nd). First version requires
only m broadcast communications. It is because inner products and update of vector w; are separated (lines
3,4 of 1st) so all data about j inner products can be transmitted with only one communication. GMRES
with Arnoldi-Modified Gram-Schmidt algorithm is the basic method and it will be denoted as GMRES in
text below. GMRES with Arnoldi algorithm is the method to prove it’s advantage in parallel computaions
and it will be denoted as GMRES2



Results of the performance tests are in the table below. Field x means acceleration - relation between
CPU time on 1 CPU and time on N CPU. Number of CPU N also shows maximal possible acceleration.
Note: acceleration of GMRES?2 is the relation between CPU time of GMRES (not GMRES2!) on 1 CPU
and CPU time of GMRES2 on N CPU. It is because GMRES obviously preferable on a single processor.

Table 18: GMRES acceleration: Mesh 57600 cv (240x240)
GMRES(5) | GMRES2(5) | GMRES(20) | GMRES2(20) | GMRES(50) | GMRES2(50)

Num | Time X Time X Time X Time X Time X Time X
of of 100 of 100 of 50 of 50 of 10 of 10
CPU iter. iter. iter. iter. iter. iter.

1 52.88 1 55.64 | 0.95 | 240.8 1 248 0.97 | 259.2 1 273 0.95
2 27.3 1.94 | 2815 | 1.88 | 124.0 | 1.94 | 1269 | 1.89 | 1349 | 1.93 | 1376 | 1.88
4 13.3 3.98 | 13.45 | 3.93 | 57.7 | 417 | 57.0 4.22 62.1 | 4.17 | 61.3 4.23
9 6.5 8.13 6.4 8.26 | 27.0 | 892 | 25.5 9.44 28.1 | 9.22 | 26.6 9.74
16 4.8 11.02 4.3 12.3 | 20.5 | 11.7 | 16.1 15.0 219 | 11.8 | 15.8 16.4
25 442 | 1196 | 3.63 | 146 | 209 | 115 | 124 19.4 224 | 11.6 | 129 20.1

Table 19: GMRES acceleration: Mesh 230400 cv (480x480)
GMRES(5) | GMRES2(5) | GMRES(20) | GMRES2(20) | GMRES(50) | GMRES2(50)

Num | Time X Time X Time X Time X Time X Time X
of of 100 of 100 of 20 of 20 of 5 of 5
CPU iter. iter. iter. iter. iter. iter.

1 215 1 230 | 093 | 391 1 410 0.95 935 1 358 0.96
2 110.8 | 1.94 | 1148 | 1.87 | 197.6 | 1.98 207 1.89 | 267.3 2 279 1.92
4 57.2 | 3.76 | 59.6 | 3.61 | 102.4 | 3.82 106 3.69 | 138.2 | 3.87 | 143 3.74
9 26.0 | 827 | 26.1 | 824 | 473 | 827 | 474 | 8.25 64.5 8.3 63.8 | 8.39
16 15.14 | 14.2 | 14.7 | 146 | 26.2 | 149 | 24.6 15.9 359 | 149 | 31.7 16.9
25 10.7 | 20.1 | 10.12 | 21.2 | 183 | 21.37 | 15.3 25.6 248 | 216 | 19.9 26.9

Table 20: GMRES acceleration: Mesh 921600 cv (960x960)
GMRES(5) | GMRES2(5) | GMRES(20) | GMRES2(20) | GMRES(50) | GMRES2(50)

Num | Time X Time X Time X Time X Time X Time X
of of 25 of 25 of 5 of 5 of 2 of 2
CPU | iter. iter. iter. iter. iter. iter.

1 224 1 233 | 096 | 390 1 409 0.95 856 1 903 0.95
2 109.4 | 2.05 | 1145 | 1.96 | 196 | 1.99 | 206 1.89 425 | 2.01 | 446 1.92
4 56.9 | 3.94 | 59.7 | 3.75 | 101 | 3.86 | 106 3.68 218 | 3.93 | 229 3.74
9 25.7 | 8.72 | 26.7 | 839 | 45.8 | 852 | 476 | 8.19 98.9 | 8.65 | 1024 | 8.36
16 154 | 145 | 153 | 146 | 26.5 | 14.7 | 27.1 14.4 o7 15.0 | 57.8 14.8
25 10.1 | 22.2 | 10.0 | 224 | 17.7 | 220 | 175 22.3 383 | 223 | 37.3 22.9

In some cases achieved acceleration exceeds maximal possible. Probably this is due to cache memory
effect. Advantage of GMRES2 over GMRES as it was expected is getting higher when restart lenght grows
and getting lower when meshs size grows. GMRES?2 is almost twice faster than GMRES on mesh 240x240

with restart lenght 50. But these methods are almost equal on mesh 960x960 with restart lenght 50 and
lower.
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Figure 20: GMRES, mesh 240x240. CPU time of fixed number of iterations (left) and acceleration (right)
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7 Summary table of acceleration results

This table shows acceleration (Field x in the table) and efficiency of parallelization (Field % in the table)
of Krylov subspace solvers for different mesh size when using 25 CPU. Efficiency of parallelization means
relation between achieved acceleration and maximum possible acceleration wich is equal to number of CPU.
It is easy to compare abilities of acceleration of these solvers with this table. Two implementations of matrix
vector product with 5-diagonal matrix are also included in this table as it is primary parallel operation in
this solvers.

Table 21: Summary table of acceleration achieved using 25 CPU

Mesh size: 240x240 (57600) | 480x480 (230400) | 960x960 (921600)
Method X | % X | % X | %
CG 14.35 57 16.1 64 20.5 82
BI-CG 11.8 47 17.9 72 21.54 86
BI-CGSTAB 9.24 39 16.49 66 21.26 85
GMRES() | 1196 | 48 20.1 80 22.2 89
GMRES2(5) 14.6 58 21.2 84 224 90
GMRES(20) 11.5 46 21.37 85 22.0 89
GMRES2(20) 19.4 77 25.6 102 22.3 89
GMRES(50) 11.6 46 21.6 86 22.3 89
GMRES2(50) 20.1 80 26.9 108 22.9 92
MVP 20.8 83 18.36 73 21.92 88
MVPO 23.7 95 19.17 77 21.6 86

In some cases efficiency of parallelization exceeded 100%. Probably this happened due to cache memory
effect.
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